(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus(0, Y) → 0
minus(s(X), s(Y)) → minus(X, Y)
geq(X, 0) → true
geq(0, s(Y)) → false
geq(s(X), s(Y)) → geq(X, Y)
div(0, s(Y)) → 0
div(s(X), s(Y)) → if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) → X
if(false, X, Y) → Y
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
minus(s(X), s(Y)) →+ minus(X, Y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [X / s(X), Y / s(Y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
minus(0', Y) → 0'
minus(s(X), s(Y)) → minus(X, Y)
geq(X, 0') → true
geq(0', s(Y)) → false
geq(s(X), s(Y)) → geq(X, Y)
div(0', s(Y)) → 0'
div(s(X), s(Y)) → if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0')
if(true, X, Y) → X
if(false, X, Y) → Y
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
minus(0', Y) → 0'
minus(s(X), s(Y)) → minus(X, Y)
geq(X, 0') → true
geq(0', s(Y)) → false
geq(s(X), s(Y)) → geq(X, Y)
div(0', s(Y)) → 0'
div(s(X), s(Y)) → if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0')
if(true, X, Y) → X
if(false, X, Y) → Y
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
geq :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
div :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
minus,
geq,
divThey will be analysed ascendingly in the following order:
minus < div
geq < div
(8) Obligation:
TRS:
Rules:
minus(
0',
Y) →
0'minus(
s(
X),
s(
Y)) →
minus(
X,
Y)
geq(
X,
0') →
truegeq(
0',
s(
Y)) →
falsegeq(
s(
X),
s(
Y)) →
geq(
X,
Y)
div(
0',
s(
Y)) →
0'div(
s(
X),
s(
Y)) →
if(
geq(
X,
Y),
s(
div(
minus(
X,
Y),
s(
Y))),
0')
if(
true,
X,
Y) →
Xif(
false,
X,
Y) →
YTypes:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
geq :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
div :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
minus, geq, div
They will be analysed ascendingly in the following order:
minus < div
geq < div
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
minus(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
n5_0)) →
gen_0':s3_0(
0), rt ∈ Ω(1 + n5
0)
Induction Base:
minus(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
0'
Induction Step:
minus(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) →IH
gen_0':s3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
minus(
0',
Y) →
0'minus(
s(
X),
s(
Y)) →
minus(
X,
Y)
geq(
X,
0') →
truegeq(
0',
s(
Y)) →
falsegeq(
s(
X),
s(
Y)) →
geq(
X,
Y)
div(
0',
s(
Y)) →
0'div(
s(
X),
s(
Y)) →
if(
geq(
X,
Y),
s(
div(
minus(
X,
Y),
s(
Y))),
0')
if(
true,
X,
Y) →
Xif(
false,
X,
Y) →
YTypes:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
geq :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
div :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
geq, div
They will be analysed ascendingly in the following order:
geq < div
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
geq(
gen_0':s3_0(
n212_0),
gen_0':s3_0(
n212_0)) →
true, rt ∈ Ω(1 + n212
0)
Induction Base:
geq(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
true
Induction Step:
geq(gen_0':s3_0(+(n212_0, 1)), gen_0':s3_0(+(n212_0, 1))) →RΩ(1)
geq(gen_0':s3_0(n212_0), gen_0':s3_0(n212_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
minus(
0',
Y) →
0'minus(
s(
X),
s(
Y)) →
minus(
X,
Y)
geq(
X,
0') →
truegeq(
0',
s(
Y)) →
falsegeq(
s(
X),
s(
Y)) →
geq(
X,
Y)
div(
0',
s(
Y)) →
0'div(
s(
X),
s(
Y)) →
if(
geq(
X,
Y),
s(
div(
minus(
X,
Y),
s(
Y))),
0')
if(
true,
X,
Y) →
Xif(
false,
X,
Y) →
YTypes:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
geq :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
div :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
geq(gen_0':s3_0(n212_0), gen_0':s3_0(n212_0)) → true, rt ∈ Ω(1 + n2120)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
div
(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol div.
(16) Obligation:
TRS:
Rules:
minus(
0',
Y) →
0'minus(
s(
X),
s(
Y)) →
minus(
X,
Y)
geq(
X,
0') →
truegeq(
0',
s(
Y)) →
falsegeq(
s(
X),
s(
Y)) →
geq(
X,
Y)
div(
0',
s(
Y)) →
0'div(
s(
X),
s(
Y)) →
if(
geq(
X,
Y),
s(
div(
minus(
X,
Y),
s(
Y))),
0')
if(
true,
X,
Y) →
Xif(
false,
X,
Y) →
YTypes:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
geq :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
div :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
geq(gen_0':s3_0(n212_0), gen_0':s3_0(n212_0)) → true, rt ∈ Ω(1 + n2120)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
(18) BOUNDS(n^1, INF)
(19) Obligation:
TRS:
Rules:
minus(
0',
Y) →
0'minus(
s(
X),
s(
Y)) →
minus(
X,
Y)
geq(
X,
0') →
truegeq(
0',
s(
Y)) →
falsegeq(
s(
X),
s(
Y)) →
geq(
X,
Y)
div(
0',
s(
Y)) →
0'div(
s(
X),
s(
Y)) →
if(
geq(
X,
Y),
s(
div(
minus(
X,
Y),
s(
Y))),
0')
if(
true,
X,
Y) →
Xif(
false,
X,
Y) →
YTypes:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
geq :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
div :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
geq(gen_0':s3_0(n212_0), gen_0':s3_0(n212_0)) → true, rt ∈ Ω(1 + n2120)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
(21) BOUNDS(n^1, INF)
(22) Obligation:
TRS:
Rules:
minus(
0',
Y) →
0'minus(
s(
X),
s(
Y)) →
minus(
X,
Y)
geq(
X,
0') →
truegeq(
0',
s(
Y)) →
falsegeq(
s(
X),
s(
Y)) →
geq(
X,
Y)
div(
0',
s(
Y)) →
0'div(
s(
X),
s(
Y)) →
if(
geq(
X,
Y),
s(
div(
minus(
X,
Y),
s(
Y))),
0')
if(
true,
X,
Y) →
Xif(
false,
X,
Y) →
YTypes:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
geq :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
div :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
(24) BOUNDS(n^1, INF)